Lycée secondaire les Aglabites	devoir de synthèse1	M ^{me} Ben Hloua Mona
09/12/2010	Prénom :	Classe 3 ^{ième} année
Durée : 2 heures	Nom : N :	Math

- L'utilisation de <u>la calculatrice personnelle</u> est permise celle du <u>portable</u> <u>Non</u>!
- Donner les expressions littérales avant toute application numérique.
- Toutes les parties sont indépendantes.

\sim 1	•	•	/—		1	
'n	ım	$1 \wedge 1$		\sim 1	ntc	١
UП		16 (. / 1	JUI	1112	ı
•		,	\		ints)	,

Exercice 1 : (1,5 points)
Soit l'acide AH et la base B

0	it i doide	, ,	ot ia	Daso	- .			
1.	Donner	l'équa	ation	de la	réaction	de B -	avec	l'eau.

2. Donner l'équation de la réaction entre AH et une base comme OH ⁻ .
3. Donner l'équation de la réaction entre B⁻ et H₃O⁺.
4. H ⁺ existe-t-il en solution aqueuse ?
5. Qu'est-ce qu'on appel un Amphotère ? Citer un exemple.

Exercice 2 : 1. Définir un acide selon Bronsted.
 a- Ecrire le symbole et l'équation formelle du couple acide base dont la base conjuguée est l'ammoniac (NH3).
b- Ecrire le symbole et l'équation formelle du couple acide base dont l'acide conjugué est l'acic chlorhydrique (HCI).
c- Ecrire l'équation chimique de la réaction de l'acide chlorhydrique avec l'ammoniac.
3. On mélange un volume $V1 = 50$ mL d'une solution aqueuse d'acide chlorhydrique de concentration molaire $C_1 = 2$ mol.L ⁻¹ avec un volume $V_2 = 80$ mL d'une solution aqueuse de soude NaOH de concentration molaire $C_2 = 1$ mol.L ⁻¹ . Déterminer à la fin de la réaction, supposée totale, les concentrations molaires des ions hydroxyde OH^- et les ions hydronium H_3O^+ dans la solution

Physique (13points):

Exercice1:(9points)

Un fil rigide OA en cuivre, de masse m=90 g et de longueur OA=60 cm est suspendu verticalement en son extrémité O et peut tourner librement autour d'un axe passant par O. Son extrémité A plonge légèrement dans le mercure.

Le fil **OA** traverse un champ magnétique uniforme et horizontal **B** qui s'étend sur une distance I = 6 cm. Soit M le milieu de la portion du fil plongée dans ce champ tel que **OM** = **40** cm. On fait passer dans le fil **OA** un courant descendant d'intensité I = 9 A. L'intensité du champ magnétique est I = 15.10-2 T (voir schéma).

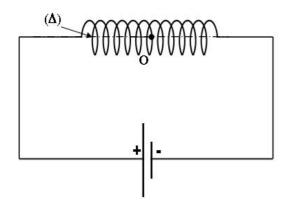
1. Dans quel sens dévie le fil **OA** ? Justifier la réponse (le montrer sur le même schéma de figure !)

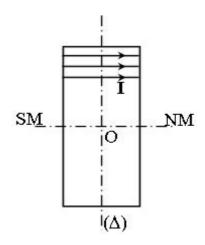
2. Calculer l'intensité de la force magnétique exercée sur le fil OA.

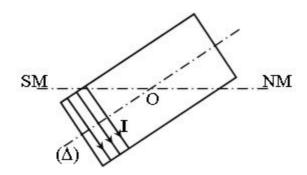
que α est faible de façon que la longueur de la portion du fil plongée dans le champ reste sensiblement la même.
3. Calculer l'angle de déviation α du fil OA dans sa nouvelle position d'équilibre. On supposera que α est faible de façon que la longueur de la portion du fil plongée dans le champ reste sensiblement la même.
que α est faible de façon que la longueur de la portion du fil plongée dans le champ reste sensiblement la même.
que α est faible de façon que la longueur de la portion du fil plongée dans le champ reste sensiblement la même.
que α est faible de façon que la longueur de la portion du fil plongée dans le champ reste sensiblement la même.
que α est faible de façon que la longueur de la portion du fil plongée dans le champ reste sensiblement la même.
que a est faible de façon que la longueur de la portion du fil plongée dans le champ reste sensiblement la même.

Exercice 2:

(Veuillez travailler cet exercice sur une feuille a part !!!)


Un solénoïde (S) de longueur L = 25 cm et comportant 80 spires est traversé par un courant d'intensité I = 36 mA.


1. Préciser les faces nord et sud du solénoïde (sur la figure1)


Représenter les lignes de champ à l'intérieur du solénoïde.

Donner les caractéristiques du vecteur champ magnétique B₁ à l'intérieur de (S) au point O.

- **2.** Le solénoïde (**S**) est placé verticalement de façon que son axe (Δ) soit perpendiculaire au plan méridien magnétique(figure2).
- **a-** Calculer la valeur du champ magnétique résultant au point **O**.
- **b-** Calculer l'angle de déviation α_1 d'une aiguille aimantée initialement placée à l'intérieur du solénoïde
- **3-** Comment faut-il placer le solénoïde traversé par le courant I pour que B_H et B'_R (champ magnétique résultant) soient parallèles et de même sens ? Préciser le sens du courant et calculer la valeur du champ magnétique résultant B_R' .
- 4. L'axe (Δ) du solénoïde fait un angle β = 30° avec le plan méridien magnétique. Représenter sur la figure les vecteurs : B_H , B_1 et B_R ".

